

ZX160160CDPSWSN

March 5,2010 Version 1.0

RECORDS OF REVISION

DATE	REVISED NO.	REVISED DESCRIPTIONS	PREPARED	CHECKED	APPROVED
March 5,2010	1.00	FIRST ISSUE	НК		

CONTENTS

1.	GERENAL SPECIFICATIONS	1
2.	FEATURES	1
3.	MACHANICAL SPECIFICATIONS	1
4.	ABSOLUTE MAXIMUM RATINGS	2
5.	ELECTRICAL CHARACTERISTICS	2
6.	OPTICAL CHARACTERISTICS	3
7.	TIMING CHARACTERISTICS	4
8.	COMMANDS	11
9.	PIN ASSIGNMENT	12
10.	OUTLINE DIMENSIONS	14
11.	RELIABILITY	15
12.	QUALITY GUARANTEE	16
13.	INSPECTION CRITERIA	17
14.	PRECAUTIONS FOR USING LCD MODULES	20
15.	USING LCD MODULES	21

1. GENERAL SPECIFICATIONS:

1-1 SCOPE:

This specification covers the delivery requirements for the liquid crystal display delivered by ZXLCD TECHNOLOGY to Customer $\,\circ\,$

1-2 PRODUCTS:

Liquid Crystal Display Module (LCM)

1-3 MODULE NAME:

ZX160160CDPSWSN

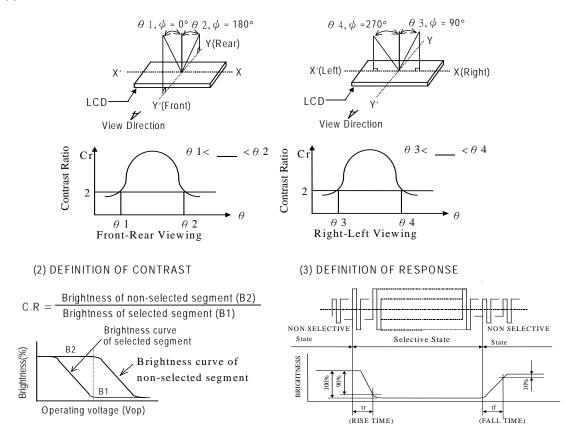
2. FEATURES

Item	Standard Value
Display Type	160*160 DOTS
	□FSTN, Transmissive,Negative,Extened TEMP
	■FSTN, Transflective,Positive,Extened TEMP
LCD Type	□STN, BLUE,Transmissive,Negative,Extened TEMP
	□STN, GREY,Transflective,Positive,Extened TEMP
	□STN, Yellow-GREEN,Positive,Extended TEMP
Drive Pattern	1/160Duty, 1/13Bias
Viewing Direction	6 O'clock
	□YELLOW-GREEN LED BOTTOM BL
Backlight Type	■WHITE EDGE LED BL
	□CCFL WHITE BL
Weight	TBD
Interface	8/16-bit 6800/8080 MPU interface and Serial interface
Driver IC	ST7529

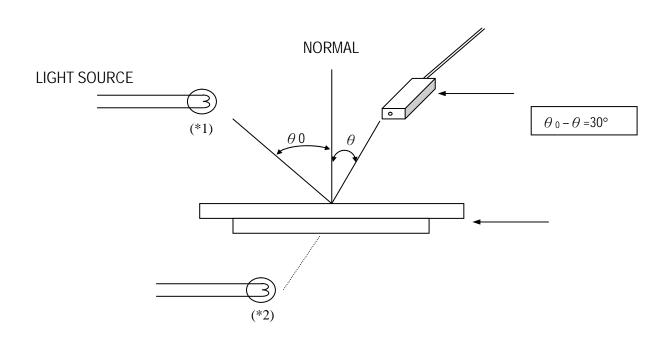
3. MACHANICAL SPECIFICATIONS

ITEM	STANDARD VALUE	UNIT
DISPLAY FORMAT	160*160 dots	
MODULE DIMENSION	54.0(W) X 60.0(H) X 6.2(T)	mm
EFFECTTVE DISPLAY AREA	43.98(W) X42.38(H)	mm
DOT SIZE	0.255(W) X 0.245(H)	mm
DOT PITCH	0.275(W) X 0.265(H)	mm

4. ABSOLUTE MAXIMUM RATING


ITEM	SYMBOL	CONDITION	STA	UNIT		
IILIVI	STIVIDOL	CONDITION	MIN	TYP	MAX	UNIT
POWER SUPPLY FOR LOGIC	VDD	Ta=25°C	-0.3	_	7.0	V
INPUT VOLTAGE	VIN	Ta=25°C	-0.3	_	VDD+0.3	V
Module OPERATION	TOPR		-20	_	+70	$^{\circ}$ C
TEMPERATURE	TOPR		-20		+70	
Module STORAGE	TCTC		20		+80	$^{\circ}$ C
TEMPERATURE	TSTG		- 30		+00	
Storage Humidity	H _D	Ta < 40 °C	-		90	%RH

5. ELECTRICAL CHARACTERISTICS


ITEM	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Supply Voltage (logic)	Vdd-Vss	-	2.4	3.0	3.3	V
Supply Voltage (LCD)	Vlcd	Vdd=3.0V (25°C)	-	17.5	-	V
Input	V-ih	"H" level	0.7VDD	-	VDD	V
signal voltage	V-il	"L" level	VSS	-	0.3VDD	V
Output	V-oh	"H" level	Vdd-0.6	-	-	V
signal voltage	V-ol	"H" level	0	-	GND+0.6	V
Supply Current (logic)	Icc	VDD=3.0V	-	460	600	uA
Supply Voltage (LED)	V-bl	White LED	-	3.1	-	V
Supply Current (LED)	I-bl	White LED	-	60	-	mA

6. OPTICAL CHARACTERISTICS

(1) DEFINITION OF VIEWING ANGLE

(4) Measuring Instruments For Electro-optical Characteristics

7.0 TIMING CHARACTERISTICS

7.1 DC CHARACTERISTICS

 $T_a = -30^{\circ}\mathbb{C}$ to $+85^{\circ}\mathbb{C}$

	Item	0	O = ditio =		Rating		Units	Applicable
	Item Symbol C		Condition	Min.	Тур.	Тур. Мах.		Pin
Operating V	oltage (1)	VDD VDD1	-	2.4	-	3.3	٧	VDD*1 VDD1
Operating Voltage (2)		VDD2 VDD3 VDD4 VDD5	(Relative to VSS)	2.4	-	3.3	٧	VDD2 VDD3 VDD4 VDD5
High-level Ir	nput Voltage	VIH	-	0.7 VDD	-	VDD	٧	*2
Low-level In	put Voltage	VIL	-	VSS	-	0.3 VDD	٧	*2
High-level C	High-level Output Current		VDD=2.7V VOH =2.2V	0.5	-	-	mA	*3
Low-level O	utput Current	IOL	VDD=2.7V VOL = 0.5V	-	-	-0.5	mA	*3
Input leakag	je current	ILI	VIN = VDD or VSS	-1.0	-	1.0	μΑ	*4
Liquid Cryst Resistance	Liquid Crystal Driver ON Resistance		Ta = 25℃ (Relative To VSS) V0 = 14.0V VDD = 2.7V	,	1.4	2.0	ΚΩ	SEGn COMn *5
	Internal Oscillator	fOSC	1/160 duty	-	12.4	26	kHz	CL*6
Oscillator	External Input	fCL	Ta = 25℃	-	12.4	26	kHz	CL
Frequency	Frame frequency	fFRAME	VDD = 2.7V CLD = 0	-	78	160	Hz	SEGn

Item		Symbol	Condition	Rating			Units	Applicable Pin	
	item	Symbol	Condition	Min.	Тур.	Max.			
	Input voltage	VDD	(Relative To VSS)	2.4	-	3.3	V	VDD	
Power	Supply Step-up output voltage Circuit	VLCDOUT	(Relative To VSS)	-	-	18	٧	VLCDOUT	
Internal	Voltage regulator Circuit Operating Voltage	VLCDIN	(Relative To VSS)	-	-	18	٧	VLCDIN	

^{*} Recommended LCD V_{OP} voltage is 12V~14V .

Dynamic Consumption Current: During Display, with the Internal Power Supply ON.

Test pattern Symbol	Symbol	mbol Condition		Rating			Notes
	Condition	Min.	Тур.	Max.	Units	Notes	
Display Pattern (checkerboard)	ISS	VDD = 2.8 V, V0 – VSS = 16.0 V Booster = 6x Bias = 1/12 Duty = 1/160 Bare chip Cap = 1.0uF	-	460	600	μΑ	*7
Power Down	ISS	Ta = 25℃	-	-	10	μΑ	-

Notes to the DC characteristics

- The maximum possible V_{LCD} voltage that may be generated is dependent on voltage, temperature and (display) load, and internal clock
- 2. Power-down mode. During power down all static currents are switched off.
- 3. If external V_{LCD} , the display load current is not transmitted to I_{DD} .
- 4. V_{LCD} external voltage applied to VLCDIN pin; VLCDIN disconnected from VLCDOUT

References for items marked with *

- *1. While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden fluctuations to the voltage while the MPU is being accessed.
- *2. The A0, D0 to D5, D6 (SI), D7 (SCL), D8 to D15 /RD(E), /WR(R/W), XCS, CL, RST.
- *3. The D0 to D7, D8 to D15 and CL.
- *4. The A0,/RD (E), WR(R/W), XCS, CLS, CL, RST, IF1 to IF3, M0, M1.
- *5. These are the resistance values for when a 0.1 V voltage is applied between the output terminal SEGn or COMn and the various power supply terminals (V1, V2, V3, and V4). These are specified for the operating voltage range.

 RON = 0.1 V /ΔI (Where ΔI is the current that flows when 0.1 V is applied while the power supply is ON.)
- *6. The relationship between the oscillator frequency and the frame rate frequency.
- *7. It indicates the current consumed on ICs alone when the internal oscillator circuit and display are turned on.

ST7529 I/O PIN ITO Resister Limitation

PIN Name	ITO Resister
IF1~IF3, M0, M1, CLS	No Limitation
VREF, T0~T10, TCAP, CL	Floating
VDD,VDD1~5,VSS,VSS1,VSS2,VSS4, V _{LCDIN} , V _{LCDOUT} , CxP, CxN	<100Ω
V0IN, V0OUT, V1, V2, V3, V4	<500Ω
A0, RW_WR, E_RD, XCS, D0D15, SCL, SI	<1kΩ
RST	<10kΩ

7.2 AC CHARACTERISTICS

System BUS Read/Write Characteristics 1(For the 8080 Series MPU)

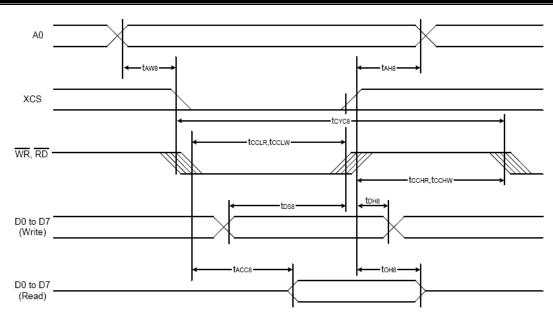


Figure 1

(VDD = 3.3V , Ta = -30 to 85℃, Die)

la	C:	C b. a.l	Condition	Ratir	ng	Units
ltem	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH8	-	20	-	
Address setup time	A0	tAW8	-	20	-	
System cycle time	1	tCYC8	-	200	-	
Enable L pulse width (WRITE)	WR	tCCLW	-	100	-	
Enable H pulse width (WRITE)	VVK	tCCHW	-	100	-	
Enable L pulse width (READ)	RD	tCCLR	-	100	-	ns
Enable H pulse width (READ)	KD.	tCCHR	-	100	-	
WRITE Data setup time		tDS8	-	150	-	
WRITE Address hold time	D0 to D7	tDH8	-	20	-	
READ access time	00 10 07	tACC8	CL = 100 pF	-	40	
READ Output disable time		tOH8	CL = 100 pF	-	30	

(VDD = 2.7 V , Ta = –30 to 85℃ ,Die)

la	C:I	Symbol Condition		Rati	Rating	
ltem	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH8	-	20	-	
Address setup time	A0	tAW8	-	30	-]
System cycle time	1	tCYC8	-	250	-	1
Enable L pulse width (WRITE)	WR	tCCLW	-	150	-	1
Enable H pulse width (WRITE)	T VVK	tCCHW	-	100	-]
Enable L pulse width (READ)	RD	tCCLR	-	150	-	ns
Enable H pulse width (READ)	, KD	tCCHR	-	100	-	
WRITE Data setup time		tDS8	-	200	-]
WRITE Address hold time	D0 to D7	tDH8	-	20	-	1
READ access time	00 10 07	tACC8	CL = 100 pF	-	40	1
READ Output disable time		tOH8	CL = 100 pF	-	30	

System Bus Read//Write Characteristics 1 (For the 6800 Series MPU)

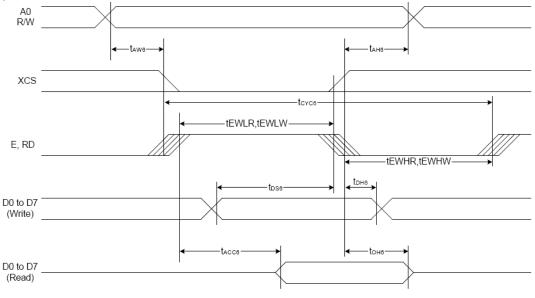


Figure 2

(VDD = 3.3 V , Ta = -30 to 85℃,Die)

Item	Cianal	Symbol	Condition	Rati	Units	
item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time	A0	tAH6	-	20	-	
Address setup time	Au	tAW6	-	20	-	
System cycle time		tCYC6	-	200	-	
Enable L pulse width (WRITE)	E	tEWLW	-	100	-	
Enable H pulse width (WRITE)		tEWHW	-	100	-	
Enable L pulse width (READ)	RD	tEWLR	-	100	-	ns
Enable H pulse width (READ)	KD.	tEWHR	-	100	-	
WRITE Data setup time		tDS6	-	150	-	
WRITE Address hold time	D0 to D7	tDH6	-	20	-	
READ access time	D0 10 D7	tACC6	CL = 100 pF	-	40	
READ Output disable time		tOH6	CL = 100 pF	-	30	

^{*1} The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, $(tr + tf) \le (tCYC8 - tCCLW - tCCHW)$ for $(tr + tf) \le (tCYC8 - tCCLR - tCCHR)$ are specified.

^{*2} All timing is specified using 20% and 80% of VDD as the reference.

^{*3} tCCLW and tCCLR are specified as the overlap between XCS being "L" and WR and RD being at the "L" level.

(VDD = 2.7V , Ta =–30 to 85℃, Die)

14	0:1	0ll	O	Rati	ing	Units
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time	A0	tAH6	-	20	-	
Address setup time	1 40	tAW6	-	30	-	1
System cycle time		tCYC6	-	250	-	
Enable L pulse width (WRITE)	E	tEWLW	-	150	-	
Enable H pulse width (WRITE)		tEWHW	-	100	-	
Enable L pulse width (READ)	- RD	tEWLR	-	150	-	ns
Enable H pulse width (READ)	T KD	tEWHR	-	100	-	
WRITE Data setup time		tDS6	-	200	-	
WRITE Address hold time	D0 to D7	tDH6	-	20	-	
READ access time] 50 10 57	tACC6	CL = 100 pF	-	40	
READ Output disable time		tOH6	CL = 100 pF	-	30	

^{*1} The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) \leq (tCYC6 – tEWLW – tEWHW) for (tr + tf) \leq (tCYC6 – tEWLR – tEWHR) are specified.

SERIAL INTERFACE (4-LINE Interface)

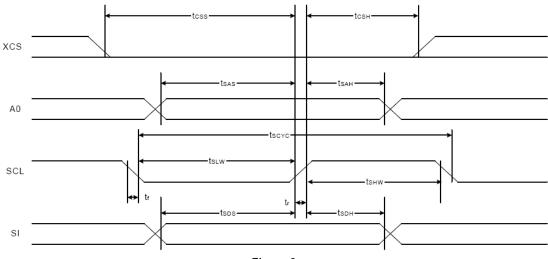


Figure 3

 $^{^{*}2}$ All timing is specified using 20% and 80% of VDD as the reference.

 $^{^{\}ast}3$ tEWLW and tEWLR are specified as the overlap between XCS being "L" and E.

(V_{DD}=3.3V,Ta= -30 to 85℃,Die)

Itom	Signal	Cumbal	Condition	Rati	ing	Linita
ltem	Signal	Symbol	Condition	Min.	Max	Units
Serial Clock Period		tSCYC	-	100	-	
SCL "H" pulse width	SCL	tSHW	-	50	-	
SCL "L" pulse width	1	tSLW	-	50	-	
Address setup time	A0	tSAS	-	40	-	
Address hold time	Α0	tSAH	-	30	-	ns
Data setup time	sı	tSDS	-	30	-	
Data hold time] 31	tSDH	-	30	-	
CS-SCL time	xcs	tCSS	-	20	-	1
CS-SCL time	7 ^CS	tCSH	-	50	-	

(V_{DD}=2.7V,Ta= -30 to 85℃,Die)

lta	Cimnal	Complete	Condition	Rati	ing	Units
Item	Signal	Symbol	Condition	Min.	Max.	Units
Serial Clock Period		tSCYC	-	110	-	
SCL "H" pulse width	SCL	tSHW	-	60	-	
SCL "L" pulse width		tSLW	-	50	-	
Address setup time	A0	tSAS	-	50	-	
Address hold time	Au	tSAH	-	40	-	ns
Data setup time	SI	tSDS	-	40	-	
Data hold time	31	tSDH	-	40	-	
CS-SCL time	xcs	tCSS	-	30	-	1
CS-SCL time	703	tCSH	-	60	-	

 $^{^{\}star}1$ The input signal rise and fall time (tr, tf) are specified at 15 ns or less.

SERIAL INTERFACE (3-Line Interface)

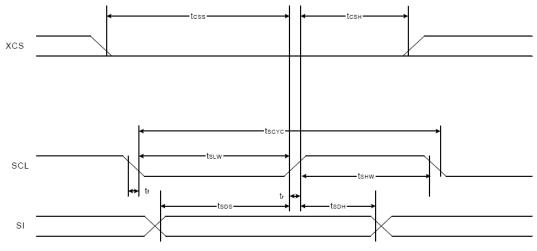


Figure 4

 $^{^{\}ast}2$ All timing is specified using 20% and 80% of VDD as the standard.

(V_{DD}=3.3V,Ta= -30 to 85℃,Die)

léa-m-	Simme!	Coma h a l	Candition	Rati	Units	
ltem	Signal	Symbol	Condition	Min.	Max.	Units
Serial Clock Period		tSCYC	-	100	-	
SCL "H" pulse width	SCL	tSHW	-	50	-	
SCL "L" pulse width		tSLW	-	50	-	
Data setup time	SI	tSDS	-	30	-	ns
Data hold time	31	tSDH	-	30	-	
CS-SCL time	xcs	tCSS	-	20	-	
CS-SCL time	703	tCSH	-	50	-	

(V_{DD}=2.7V,Ta= -30 to 85℃,Die)

lta un	Cimmel	Comple el	Condition	Rati	Units	
Item	Signal	Symbol	Condition	Min.	Max.	Units
Serial Clock Period		tSCYC	-	110	-	
SCL "H" pulse width	SCL	tSHW	-	60	-	
SCL "L" pulse width		tSLW	-	50	-	
Data setup time	SI	tSDS	-	40	-	ns
Data hold time	51	tSDH	-	40	-	
CS-SCL time	xcs	tCSS	-	30	-	
CS-SCL time	×C5	tCSH	-	60	-	

^{*1} The input signal rise and fall time (tr, tf) are specified at 15 ns or less.

RESET TIMING

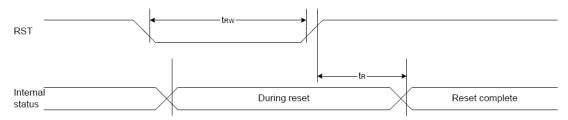


Figure 5

(VDD =3.3V , Ta = –30 to 85 $^{\circ}$,Die)

Item	Signal	Symbol	Condition		Units		
item	Signal	Symbol	Condition	Min.	Тур.	Max.	Ullits
Reset time		tR	-	1	1	1	us
Reset "L" pulse width	RST	tRW	-	1		,	us

(VDD = 2.7V , Ta = -30 to 85℃,Die)

Item	Signal	Symbol	Condition		Units		
item	Sigilal	Symbol	Condition	Min.	Тур.	Max.	Offics
Reset time		tR	-	-	1	1.5	us
Reset "L" pulse width	RST	tRW	-	1.5	1	-	us

 $^{^{\}ast}2$ All timing is specified using 20% and 80% of VDD as the standard.

8.0 COMMANDS

8.1 Command table

Ext=0 or Ext=1

OWN CHANGE	Index	Command	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function	Hex	Parameter
200000000000000000000000000000000000000	1	Ext In	0	1	0	0	0	1	1	0	0	0	0	Ext=0 Set	30	None
STREET, STREET	2	Ext Out	0	1	0	0	0	1	1	0	0	0	1	Ext=1 Set	31	None

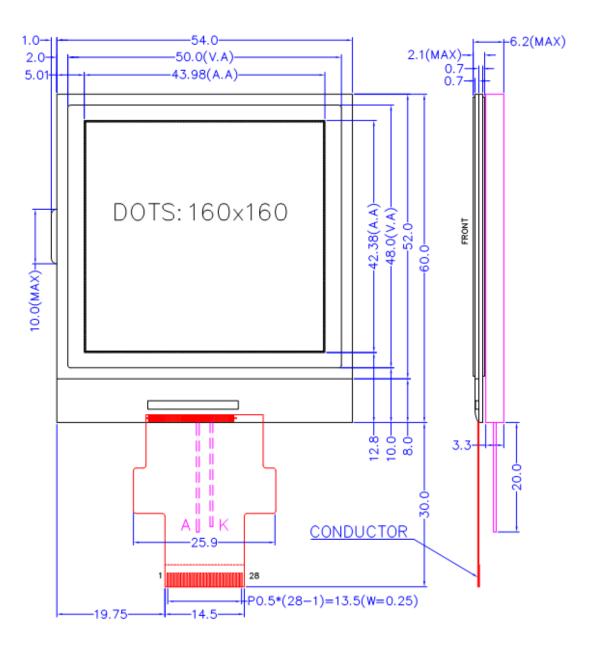
Ext=0

Index	Command	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function	Hex	Parameter
1	DISON	0	1	0	1	0	1	0	1	1	1	1	Display On	AF	None
2	DISOFF	0	1	0	1	0	1	0	1	1	1	0	Display Off	ΑE	None
3	DISNOR	0	1	0	1	0	1	0	0	1	1	0	Normal Display	A6	None
4	DISINV	0	1	0	1	0	1	0	0	1	1	1	Inverse Display	Α7	None
5	COMSCN	0	1	0	1	0	1	1	1	0	1	1	COM Scan Direction	ВВ	1 byte
6	DISCTRL	0	1	0	1	1	0	0	1	0	1	0	Display Control	CA	3 bytes
7	SLPIN	0	1	0	1	0	0	1	0	1	0	1	Sleep In	95	None
8	SLPOUT	0	1	0	1	0	0	1	0	1	0	0	Sleep Out	94	None
9	LASET	0	1	0	0	1	1	1	0	1	0	1	Line Address Set	75	2 bytes
10	CASET	0	1	0	0	0	0	1	0	1	0	1	Column Address Set	15	2 bytes
11	DATSDR	0	1	0	1	0	1	1	1	1	0	0	Data Scan Direction	ВС	3 bytes
12	RAMWR	0	1	0	0	1	0	1	1	1	0	0	Writing to Memory	5C	Data
13	RAMRD	0	1	0	0	1	0	1	1	1	0	1	Reading from Memory	5D	Data
14	PTLIN	0	1	0	1	0	1	0	1	0	0	0	Partial display in	Α8	2 bytes
15	PTLOUT	0	1	0	1	0	1	0	1	0	0	1	Partial display out	Α9	None
16	RMWIN	0	1	0	1	1	1	0	0	0	0	0	Read and Modify Write	E0	None
17	RMWOUT	0	1	0	1	1	1	0	1	1	1	0	RMW end	EE	None
18	ASCSET	0	1	0	1	0	1	0	1	0	1	0	Area Scroll Set	АА	4 bytes
19	SCSTART	0	1	0	1	0	1	0	1	0	1	1	Scroll Start Set	AB	1 byte
20	OSCON	0	1	0	1	1	0	1	0	0	0	1	Internal OSC on	D1	None
21	OSCOFF	0	1	0	1	1	0	1	0	0	1	0	Internal OSC off	D2	None
22	PWRCTRL	0	1	0	0	0	1	0	0	0	0	0	Power Control	20	1 byte
23	VOLCTRL	0	1	0	1	0	0	0	0	0	0	1	EC control	81	2 bytes
24	VOLUP	0	1	0	1	1	0	1	0	1	1	0	EC increase 1	D6	None
25	VOLDOWN	0	1	0	1	1	0	1	0	1	1	1	EC decrease 1	D7	None
26	RESERVED	0	1	0	1	0	0	0	0	0	1	0	Not Use	82	0

27	EPSRRD1	0	1	0	0	1	1	1	1	1	0	0	READ Register1	7C	None
28	EPSRRD2	0	1	0	0	1	1	1	1	1	0	1	READ Register2	7D	None
29	NOP	0	1	0	0	0	1	0	0	1	0	1	NOP Instruction	25	None
30	STREAD	0	0	1			F	Read	Dat	а			Status Read		
31	EPINT	0	1	0	0	0	0	0	0	1	1	1	Initial code(1)	07	1 byte

Ext=1

Index	Command	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function	Hex	Parameter
1	Gray 1 Set	0	1	0	0	0	1	0	0	0	0	0	FRAME 1 Gray PWM Set	20	16 bytes
2	Gray 2 Set	0	1	0	0	0	1	0	0	0	0	1	FRAME 2 Gray PWM Set	21	16 bytes
3	ANASET	0	1	0	0	0	1	1	0	0	1	0	Analog Circuit Set	32	3 bytes
4	SWINT	0	1	0	0	0	1	1	0	1	0	0	Software Initial	34	None
5	EPCTIN	0	1	0	1	1	0	0	1	1	0	1	Control EEPROM	CD	1 byte
6	EPCOUT	0	1	0	1	1	0	0	1	1	0	0	Cancel EEPROM	CC	None
7	EPMWR	0	1	0	1	1	1	1	1	1	0	0	Write to EEPROM	FC	None
8	EPMRD	0	1	0	1	1	1	1	1	1	0	1	Read from EEPROM	FD	None


Note: The table above is for 8-bit interface. For the application of 16-bit interface, fill D15~8 with 0, and other bits are just the same with the table above.

9. PIN ASSIGNMENT

PIN	SYMBOL	I/O	FUNCTION					
1	VSS	I	Ground	Ground				
2	VDD	I	Power si	upply(3.0~	·3.3).			
3	XCS	I	Chip sele	ect input p	ins			
				truction I/0 15 may be			hen XCS is "L". When chip select is	non-active,
4	SCL	I	This pin	is used to	input seri	al clock w	hen the serial interface is selected.	
			The data	is latched	d at the ris	ing edge.	(3 line and 4 line)	
5	SI	I	This pin	is used to	input seri	al data wh	nen the serial interface is selected.	(3 line and 4
			line)					
6	IF3	I	Paralle	el / Seria	L data in	nut sala	ct innut	
7	IF2	I	i arane	IF1	IF2	IF3	MPU interface type	1
8	IF1	I	1					
				Н	Н	Н	80 series 16-bit parallel	
				Н	Н	L	80 series 8-bit parallel	
				Н	L	L	68 series 16-bit parallel	
				L H H 68 series 8-bit parallel				
				L	L	Н	9-bit serial (3 line)	
				L	L	L	8-bit serial (4 line)	
		_						
9	RST	I	Reset in	put pin				

			When RST is "I	" initializa	tion is executed.			
10	E RD	I						
10	L_KD	1	Read / Write exec	E_RD	Description			
			6800-series	E	Read / Write control input pin - RW = "H": When E is "H", DB0 to DB15 are in an output status. - RW = "L": The data on DB0 to DB15 are latched at the falling edge of the E signal.			
			8080-series	/RD	Read enable clock input pin When /RD is "L", DB0 to DB15 are in an output status.			
11	DB15	I/0	They connect to the standard 8-bit or 16-bit MPU bus via the 8/16 –bit bi-directional bus. When the following interface is selected and the XCS pin is high, the following pins become high impedance, which should be fixed to VDD or VSS. 1. 8-bit parallel: DB15~DB8 are 2. Serial interface: DB15~DB0 are in the state of high impedance					
12	DB14	I/0	They connect to	the stand	ard 8-bit or 16-bit MPU bus via the 8/16 –bit bi-directional bus.			
13	DB13	I/0	They connect to	the stand	ard 8-bit or 16-bit MPU bus via the 8/16 –bit bi-directional bus.			
14	DB12	I/0	They connect to	the stand	ard 8-bit or 16-bit MPU bus via the 8/16 –bit bi-directional bus.			
15	DB11	I/0	They connect to	the stand	ard 8-bit or 16-bit MPU bus via the 8/16 –bit bi-directional bus.			
16	DB10	I/0	They connect to	They connect to the standard 8-bit or 16-bit MPU bus via the 8/16 –bit bi-directional bus.				
17	DB9	I/0	They connect to the standard 8-bit or 16-bit MPU bus via the 8/16 –bit bi-directional bus.					
18	DB8	I/0	They connect to the standard 8-bit or 16-bit MPU bus via the 8/16 –bit bi-directional bus.					
19	DB7	I/0	They connect to the standard 8-bit or 16-bit MPU bus via the 8/16 –bit bi-directional bus.					
20	DB6	I/0	They connect to the standard 8-bit or 16-bit MPU bus via the 8/16 –bit bi-directional bus.					
21	DB5	I/0	They connect to the standard 8-bit or 16-bit MPU bus via the 8/16 –bit bi-directional bus.					
22	DB4	I/0	They connect to the standard 8-bit or 16-bit MPU bus via the 8/16 –bit bi-directional bus.					
23	DB3	I/0	They connect to	They connect to the standard 8-bit or 16-bit MPU bus via the 8/16 –bit bi-directional bus.				
24	DB2	I/0	They connect to	the stand	ard 8-bit or 16-bit MPU bus via the 8/16 –bit bi-directional bus.			
25	DB1	I/0	They connect to	the stand	ard 8-bit or 16-bit MPU bus via the 8/16 –bit bi-directional bus.			
26	DB0	I/0	They connect to	the stand	ard 8-bit or 16-bit MPU bus via the 8/16 –bit bi-directional bus.			
27	RW_WR	I	Read / Write ex	ecution co	ntrol pin			
			MPU type	RW_W				
			6800-series	RW	Read / Write control input pin RW = "H" : read RW = "L" : write			
			8080-series	WR	Write enable clock input pin The data on DB0 to DB15 are latched at the rising edge of the /WR signal.			
28	A0	I	Register select	input pin				
			A0='H': DB0 to DB15 or SI are display data					
			A0='H': DB0 to	DB15or SI	are control data			

10. OUTLINE DIMENSIONS

11. RELIABILITY

Content of Reliability Test

	Environmental Test						
No.	Test Item	Content of Test	Test	Applicable			
1	High temperature	Endurance test applying the high storage temperature for a long time.	Condition 70 ℃ 200 hrs	Standard			
	storage	, , , , , , , , , , , , , , , , , , ,					
2	Low temperature storage	Endurance test applying the low storage temperature for a long time.	-20 ℃ 200 hrs				
3	High temperature operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	60 ℃ 200 hrs				
4	Low temperature operation	Endurance test applying the electric stress under low temperature for a long time.	-10 ℃ 200 hrs				
5	High temperature Humidity storage	Endurance test applying the high temperature and high humidity storage for a long time.	50 ℃ , 90% .RH 96 hrs	MIL-202E-103B JIS-C5023			
6	High temperature Humidity operation	Endurance test applying the electric stress (Voltage & Current) and temperature humidity stress to the element for a long time.	50 °C , 90% .RH 96 hrs	MIL-202E-103B JIS-C5023			
7	Temperature cycle	Endurance test applying the low and high temperature cycle. -10 °C 25 °C 60 °C 30min. \Rightarrow 5min. \Rightarrow 30min.	-10℃ - 60℃ 10 cycles				
Mech	nanical Test		l	I			
8	Vibration test	Endurance test applying the vibration during transportation and using.	10-22Hz→	MIL-202E-201A JIS-C5025			
			1.5mmp-p 22-500Hz	JIS-C7022-A-10			
			→1.5G				
			Total 0.5hrs				

9	Shock test	Constructional and mechanical	50G half sign	MIL-202E-213B
		endurance test applying the shock	wave 1l	
		during transportation.	msedc 3	
			times of	
			each	
			direction	
10	Atmospheric	Endurance test applying the	115 mbar 40	MIL-202E-105C
	pressure test	atmospheric pressure during	hrs	
		transportation by air.		
Othe	rs			
11	Static	Endurance test applying the electric	VS=800V,	MIL-883B-3015.1
	electricity test	stress to the terminal.	RS=1.5 k	
			CS=100 pF	
			1 time	

Supply voltage for logic system = 3V. Supply voltage for LCD system = Operating voltage at 25°C.

12. QUALITY GUARANTEE

Acceptable Quality Level

Each lot should satisfy the quality level defined as follows.

- Inspection method: MIL-STD-105E LEVEL II Normal one time sampling

- AQL

Partition	AQL	Definition
A: Major	0.4%	Functional defective as product
B: Minor	1.5%	Satisfy all functions as product but not satisfy cosmetic standard

Definition of 'LOT'

One lot means the delivery quantity to customer at one time.

Conditions of Cosmetic Inspection

Environmental condition

The inspection should be performed at the 1cm of height from the LCD module under 2 pieces of 40W white fluorescent lamps (Normal temperature $20\sim25^{\circ}$ C and normal humidity $60 \pm 15^{\circ}$ RH).

Inspection method

The visual check should be performed vertically at more than 30cm distance from the LCD panel.

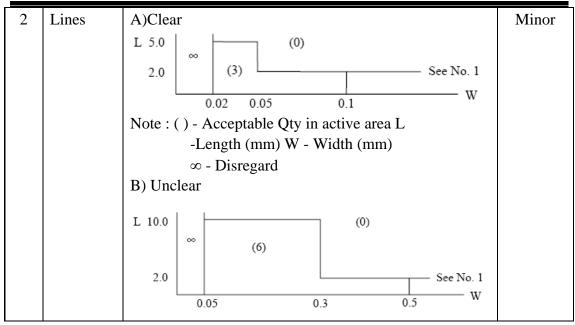
Driving voltage

The VO value which the most optimal contrast can be obtained near the specified VO in the specification. (Within ± 0.5 V of typical value at 25°C.).

13. INSPECTION CRITERIA

13.1 Module Cosmetic Criteria

No.	Item	Judgment Criterion	Partition
1	Difference in Spec.	None allowed	Major
2	Pattern peeling	No substrate pattern peeling and floating	Major
		No soldering missing	Major
3	Soldering defects	No soldering bridge	Major
		No cold soldering	Major
4	Resist flaw on	Invisible copper foil ('0.5mm or more) on	Minor
	substrate	substrate pattern	WIIIOI
	Accretion of	No soldering dust No accretion of metallic	Minor
5	metallic Foreign	foreign matters (Not exceed '0.2mm)	Minor
	matter		WIIIOI
6	Stain	No stain to spoil cosmetic badly	Minor
7	Plate discoloring	No plate fading, rusting and discoloring	Minor
8	Solder amount 1. Lead parts	a. Soldering side of PCB Solder to form a 'Filet' all around the lead. Solder should not hide the lead form perfectly. (too much) b. Components side (In case of 'Through Hole PCB') Solder to reach the Components side of PCB.	Minor
	2. Flat packages	Either 'Toe' (A) or 'Seal' (B) of the lead to be covered by 'Filet'. Lead form to be assume over solder. A B	Minor
	3. Chips	(3/2) H ≥h ≥(1/2) H	Minor


13.2 Screen Cosmetic Criteria (Non-Operating)

No.	Defect	Judgment Criterion	Partition
1	Spots	In accordance with Screen Cosmetic Criteria (Operating) No.1.	Minor
2	Lines	In accordance with Screen Cosmetic Criteria (Operating) No.2.	Minor

3	Bubbles in polarizer	Size: d mm $d \le 0.3$ $0.3 < d \le 1.0$ $1.0 < d \le 1.5$ 1.5 < d	Acceptable Qty in active area Disregard 3 1 0	Minor
4	Scratch	In accordance wit cosmetic criteria. W panel surface, the scremarkable.	Minor	
5	Allowable density	Above defects sho 30mm each other.	Minor	
6	Coloration	Not to be noticeal area of the LCD pulged with back-	Minor	
7	Contamination	Not to be noticeal	ole.	Minor

13.3. Screen Cosmetic Criteria (Operating)

No.	Defect	Judgment Criterion		Partition
1	Spots	A) Clear Note:		Minor
			1	
		Size : d mm	Acceptable Qty in active area	
		d ≤ 0.1	Disregard	
		$0.1 < d \le 0.2$	3	
		$0.2 < d \le 0.3$	2	
		0.3 < d	0	
		Including pin holes a within one pixel size.		
		B) Unclear Size:		
		Size : d mm	Acceptable Qty in active area	
		d ≤ 0.2	Disregard	
		0.2 < d ≤ 0.5	6	
		$0.5 < d \le 0.7$	2	
		0.7 < d	0	

'Clear' = The shade and size are not changed by VO.

13.4. Screen Cosmetic Criteria (Operating) (Continued)

No.	Defect	Judgment Criterion	Partition
3	Rubbing line	Not to be noticeable.	
4	Allowable density	Above defects should be separated more than 10mm each other.	Minor
5	Rainbow	Not to be noticeable.	Minor
6	Dot size	To be 95% ~ 105% of the dot size (Typ.) in drawing. Partial defects of each dot (ex. pin-hole) should be treated as 'Spot'. (see <i>Screen Cosmetic Criteria (Operating) No.1</i>)	Minor
7	Uneven brightness (only back-lit type module)	Uneven brightness must be BMAX / BMIN ≤ 2 - BMAX : Max. value by measure in 5 points - BMIN : Min. value by measure in 5 points Divide active area into 4 vertically and horizontally. Measure 5 points shown in the following figure.	Minor
		O : Measuring points	

^{&#}x27;Unclear' = The shade and size are changed by VO.

Note:

- (1) Size : d = (long length + short length) / 2
- (2) The limit samples for each item have priority.
- (3) Complexed defects are defined item by item, but if the number of defects are defined in above table, the total number should not exceed 10.
- (4) In case of 'concentration', even the spots or the lines of 'disregarded' size should be not allowed. Following three situations should be treated as 'concentration'.
 - 7 or over defects in circle of '5mm.
 - 10 or over defects in circle of '10mm.
 - 20 or over defects in circle of '20mm.

14. PRECAUTIONS FOR USING LCD MODULES

Handing Precautions

- (1) The display panel is made of glass. Do not subject it to a mechanical shock by dropping it or impact.
- (2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.
- (3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- (4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- (5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol
- (6) Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.
 - Water
 - Ketone
 - Aromatic solvents
- (7) Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.
- (8) Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the IO cable or the backlight cable.
 - (9) Do not attempt to disassemble or process the LCD module.
 - (10) NC terminal should be open. Do not connect anything.
 - (11) If the logic circuit power is off, do not apply the input signals.
- (12) To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.

- Be sure to ground the body when handling the LCD modules.
- Tools required for assembling, such as soldering irons, must be properly grounded.
- To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions.
- The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.

Storage Precautions

When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps. Keep the modules in bags (avoid high temperature high humidity and low temperatures below 0 C). Whenever possible, the LCD modules should be stored in the same conditions in which they were shipped from our company.

Others

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.

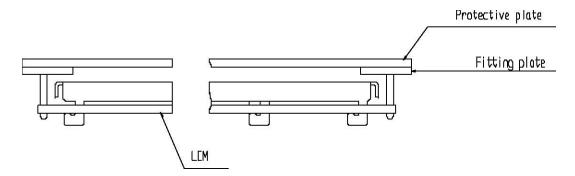
If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

To minimize the performance degradation of the LCD modules resulting from destruction caused by static electricity etc., exercise care to avoid holding the following sections when handling the modules.

- Exposed area of the printed circuit board.
- Terminal electrode sections.

15. USING LCD MODULES

Liquid Crystal Display Modules


- LCD is composed of glass and polarizer. Pay attention to the following items when handling.
- (1) Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.
- (2) Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.).
- (3) N-hexane is recommended for cleaning the adhesives used to attach front/rear polarizers and reflectors made of organic substances which will be damaged by chemicals such as acetone, toluene, ethanol and isopropylalcohol.
- (4) When the display surface becomes dusty, wipe gently with absorbent cotton or other soft material like chamois soaked in petroleum benzin. Do not scrub hard to avoid damaging the display surface.

- (5) Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading.
 - (6) Avoid contacting oil and fats.
- (7) Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizers. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temp erature air.
 - (8) Do not put or attach anything on the display area to avoid leaving marks on.
- (9) Do not touch the display with bare hands. This will stain the display area and degradate insulation between terminals (some cosmetics are determinated to the polarizers).
 - (10) As glass is fragile. It tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring.

Installing LCD Modules

The hole in the printed circuit board is used to fix LCM as shown in the picture below. Attend to the following items when installing the LCM.

(1) Cover the surface with a transparent protective plate to protect the polarizer and LC cell.

(2) When assembling the LCM into other equipment, the spacer to the bit between the LCM and the fitting plate should have enough height to avoid causing stress to the module surface, refer to the individual specifications for measurements. The measurement tolerance should be 0.1mm.

Precaution for Handing LCD Modules

Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.

- (1) Do not alter, modify or change the the shape of the tab on the metal frame.
- (2) Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.
 - (3) Do not damage or modify the pattern writing on the printed circuit board.
- (4) Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector.
- (5) Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
 - (6) Do not drop, bend or twist LCM.

Electro-Static Discharge Control

Since this module uses a CMOS LSI, the same careful attention should be paid to electrostatic discharge as for an ordinary CMOS IC.

- (1) Make certain that you are grounded when handing LCM.
- (2) Before remove LCM from its packing case or incorporating it into a set, be sure the module and your body have the same electric potential.
- (3) When soldering the terminal of LCM, make certain the AC power source for the soldering iron does not leak.
- (4) When using an electric screwdriver to attach LCM, the screwdriver should be of ground potentiality to minimize as much as possible any transmission of electromagnetic waves produced sparks coming from the commutator of the motor.
- (5) As far as possible make the electric potential of your work clothes and that of the work bench the ground potential.
- (6) To reduce the generation of static electricity be careful that the air in the work is not too dried. A relative humidity of 50%60% is recommended.

Precaution for soldering to the LCM

- (1) Observe the following when soldering lead wire, connector cable and etc. to the LCM.
 - Soldering iron temperature : 280°C 10°C.
 - Soldering time : 3-4 sec.
 - Solder : eutectic solder.

If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended that you protect the LCD surface with a cover during soldering to prevent any damage dur to flux spatters.

- (2) When soldering the electroluminescent panel and PC board, the panel and board should not be detached more than three times. This maximum number is determined by the temperature and time conditions mentioned above, though there may be some variance depending on the temperature of the soldering iron.
- (3) When remove the electoluminescent panel from the PC board, be sure the solder has completely melted, the soldered pad on the PC board could be damaged.

Precautions for Operation

- (1) Viewing angle varies with the change of liquid crystal driving voltage (VO). Adjust VO to show the best contrast.
 - (2) Driving the LCD in the voltage above the limit shortens its life.
- (3) Response time is greatly delayed at temperature below the operating temperature range. However, this does not mean the LCD will be out of the order. It will recover when it returns to the specified temperature range.
- (4) If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then back on.
- (5) Condensation on terminals can cause an electrochemical reaction disrupting the terminal circuit. Therefore, it must be used under the relative condition of 40 °C, 50% RH.
- (6) When turning the power on, input each signal after the positive/negative voltage becomes stable.

Storage

When storing LCDs as spares for some years, the following precaution are necessary.

- (1) Store them in a sealed polyethylene bag. If properly sealed, there is no need for dessicant.
- (2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0° C and 35° C.
- (3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the container in which they were shipped.)

Safety

- (1) It is recommended to crush damaged or unnecessary LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- (2) If any liquid leakes out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

Return LCM under warranty

No warranty can be granted if the precautions stated above have been disregarded.

The typical examples of violations are:

- Broken LCD glass.
- PCB eyelet's damaged or modified.
- PCB conductors damaged.
- Circuit modified in any way, including addition of components.
- PCB tampered with by grinding, engraving or painting varnish.
- soldering to or modifying the bezel in any manner.

Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects. Any connectors or cable installed by the customer must be removed completely without damaging the PCB eyelet's, conductors and terminals.